Eight
Time Limit: 1000MS | Memory Limit: 65536K | |||
Total Submissions: 30176 | Accepted: 13119 | Special Judge |
Description
The 15-puzzle has been around for over 100 years; even if you don't know it by that name, you've seen it. It is constructed with 15 sliding tiles, each with a number from 1 to 15 on it, and all packed into a 4 by 4 frame with one tile missing. Let's call the missing tile 'x'; the object of the puzzle is to arrange the tiles so that they are ordered as:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 xwhere the only legal operation is to exchange 'x' with one of the tiles with which it shares an edge. As an example, the following sequence of moves solves a slightly scrambled puzzle:
1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 5 6 7 8 5 6 7 8 5 6 7 8 5 6 7 8 9 x 10 12 9 10 x 12 9 10 11 12 9 10 11 12 13 14 11 15 13 14 11 15 13 14 x 15 13 14 15 x r-> d-> r->The letters in the previous row indicate which neighbor of the 'x' tile is swapped with the 'x' tile at each step; legal values are 'r','l','u' and 'd', for right, left, up, and down, respectively. Not all puzzles can be solved; in 1870, a man named Sam Loyd was famous for distributing an unsolvable version of the puzzle, and frustrating many people. In fact, all you have to do to make a regular puzzle into an unsolvable one is to swap two tiles (not counting the missing 'x' tile, of course). In this problem, you will write a program for solving the less well-known 8-puzzle, composed of tiles on a three by three arrangement.
Input
You will receive a description of a configuration of the 8 puzzle. The description is just a list of the tiles in their initial positions, with the rows listed from top to bottom, and the tiles listed from left to right within a row, where the tiles are represented by numbers 1 to 8, plus 'x'. For example, this puzzle
1 2 3 x 4 6 7 5 8is described by this list:
1 2 3 x 4 6 7 5 8
Output
You will print to standard output either the word ``unsolvable'', if the puzzle has no solution, or a string consisting entirely of the letters 'r', 'l', 'u' and 'd' that describes a series of moves that produce a solution. The string should include no spaces and start at the beginning of the line.
Sample Input
2 3 4 1 5 x 7 6 8
Sample Output
ullddrurdllurdruldr
Source
题目链接:
主要就是用康托展开来映射判重的问题,info::val就是康托展开hash值,info::step就是积累的状态。另外感觉这题剧毒,自己本来用int vis[]和char his[]想最后回溯记录答案从而代替速度比较慢的string,结果居然超时……TLE一晚上,要不是看了大牛的博客估计要一直T在这个坑点上。还有不知道为什么string的加号重载在C++编译器里会CE,换G++才过。相比单组输入的POJ,多组输入的HDU就友好多了,打个表就可以水过了,双广、A*神马的写起来麻烦就先不写了……
什么是康托展开?——
POJ代码:
#include#include #include #include #include #include #include #include #include #include #include #include #include #include
HDU代码:
#include#include #include #include #include #include #include #include #include #include #include #include #include #include
最近学了下IDA*,发现速度贼快,比哈希的不知道高到哪里去了,自己整理了一下一般写法,感觉还是比较模版的,可以参考上一篇IDA*的伪代码,IDA*快到如果用BFS要打表的HDU上的数据可以直接在线搜索过了,确实比较快,这里需要加一个防止走回路的剪枝(有效减少无用搜索),否则可能会超时,当然一开始要判断一下是否输入序列是无解的,可以暂时把x忽略掉,然后算7个数的逆序数,逆序数偶数才有解,奇数直接输出unsolvable,具体原理可以百度一下
代码:
#include#include #include #include #include #include #include #include #include #include #include #include #include #include #include